Programme Name: M. Sc. Statistics & Data Science

PROGRAMME OUTCOMES:

1. Upon completing the programme, students gain knowledge of statistical theory and multiple programming languages that help in modelling the data that arise in many real-life situations.

 Students learn quantitative modelling and data analysis techniques to solve real-world business problems, communicate findings, and effectively present results using data visualisation techniques.
Students get expertise in applications of statistical techniques so that they can make a career as a Statistician or a data scientist.

PROGRAM SPECIFIC OUTCOMES:

1. Understand and critically apply the statistical methods to solve problems in different sectors like pharmaceuticals, banking, retail, manufacturing, marketing etc.

2. Apart from many theoretical and statistical computing courses, we offer courses on i) Project Management that helps in understanding Project Management/Change Management ii) organisational behaviour, which gives insights into the functioning of a corporate.

Year	Semester	Course	Expected Outcomes
			Students would be able to
Ι	1	Probability Theory	1. Quantify uncertainty in real-life situations
			2. Understand the concepts of probability theory in
			higher-level used in further courses and its
			applications in real life
		Distribution Theory	1. Understand statistical distributions and their
			properties
			2. Identify appropriate statistical distribution to
			model data
		Estimation Theory	1. Develop estimators for population characteristics
			using different estimation techniques
			2. Apply suitable estimation techniques that meet
			the constraints of the given data scenario
		Linear Models & Design	1. Understand the theoretical foundations for Linear
		of Experiments	estimation theory, planning and designing of
			experiments
			3. Analyse data arise from experiments using
			various models available
		Real Analysis and Linear	1. Understand mathematical concepts needed to
		Algebra	learn the theory of Probability and Statistics
			2. Understand mathematical concepts needed in
			higher dimensions to learn the theory of
			Multivariate Statistics
		Data Management	1. Apply data management techniques, such as
			factoring, pivoting, aggregating, merging updates
			and dealing with missing values
			2. Use SQL statements for defining and querying the
			database

Course outcomes:

		3. Understand R and R Studio, explore R packages
		and apply functions, data structures, control flow,
		and loops using programming
	Programming Analytics	1. Understand Base SAS
		2. Perform data Preparation, manipulations and
		analysis using SAS
	Statistical Computing I	Apply statistical techniques learnt in theory papers
		to analyse real-life data
	Research Treatise-I	1. Analyse the data by applying concepts and
		techniques learnt in various courses
		2. Evince interest to read journal articles and pose
		research problems related to the courses studied
11	Regression Analysis	1 Carry out Multiple Regression Analysis
	Regression Analysis	2. Borform validation of a regression model and
		2. Perform valuation of a regression model and
		interpret the results in practical examples
	Testing of Hypothesis	1. Understand formulation of Statistical hypothesis
		in real-life situations
		2. Apply appropriate test to validate the hypothesis
		3. Understand the efficiency of various standard
		tests available in the literature
	Applied Multivariate	1. Build a culture of design approach in problem-
	Analysis	solving for decision making
		2 Develop analytical skills to collect handle
		manipulate and analyse results of multivariate
		analysis
		allarysis
		3. Use suitable software package for analysis of
		multivariate data
	Machine Learning	1.Understand a wide variety of high-end machine
	Techniques	learning algorithms widely accepted across all
		industries
		2. Apply appropriate learning algorithms to data
		3. Evaluate learning algorithms and select an
		appropriate model
	Python for Data Analysis	1. Understand Python programming language
	, , ,	2. Extract information from data structures
		3. Perform data analysis using Python
	Reporting &	1 Apply storytelling principles to applytics work
	Correspondence in Data	2 Improve analytics presentations through
	Science	storutalling
	Science	2. Follow guidelines and best prestings for execting
		3.Follow guidelines and best practices for creating
		nign-impact reports and presentations
	Statistical Computing II	Apply statistical techniques learnt in theory papers
 		to analyse real-life data
	Project Management	1.Implementing the project management tools
		2.Carryout the project effectively
	Research Treatise – II	1. Analyse the data by applying concepts and
		techniques learnt in various courses
		2. Evince interest to read journal articles and pose
		research problems related to the courses studied
ш	Stochastic Processes	1 Understand theoretical foundations of stochastic/
		random processes
1	1	ומוועטווו אוטנפאבא.

	2. Identify the appropriate stochastic process in a
	given situation and perform analysis
Time Series Analysis	1. Understand models used for analysing time-series
	data and model diagnostics
	2. Forecast future values using a suitable model.
Deep Learning	1. Choose appropriate deep learning techniques in
Techniques	the context of a problem and interpret the results
	2. Use appropriate techniques and software like
	Python and /or R and interpret the output
	3. Formulate proper business strategies
Pricing & Revenue	1.Set and adjust prices to maximise the profitability
Optimisation	of a company
	2. Use of analytical techniques to determine prices in
	a complex and dynamic environment
	3. Create a pricing strategy by modelling the
	interplay of supply and demand
Stochastic Finance	1. Analyse economic and financial data using
	statistical models.
	2.Interpret model results
Survival Analysis	1. Understand basic principles of survival analysis.
	2. Analyse survival data using appropriate statistical
	software
Quality Management	1. Understand Lean and Six Sigma techniques
	2. Use a set of quality management, empirical and
	statistical methods to improve the process
Nonparametric	1. Identify situations where Nonparametric
Inference	techniques are appropriate
	2.Implement Nonparametric techniques for the
	data analysis
Introduction to Big Data	1. Understand Big Data Management - Tools and
Technologies & its	Techniques
applications	2. Select tools and put architecture in place for
	solving specific Big Data processing problems
Predictive Modelling	1. Understand advanced statistical modelling using
	SAS predictive modelling.
	2. Interpret results, automate the process and
	prepare reports using SAS predictive modelling.
Statistical Computing III	Apply statistical techniques learnt in theory papers
	to analyse real-life data
Organisational	1. Develop awareness about the basics of an
Behaviour	organisation
	2. Understand the purpose and importance of
	behavioural skills in organisation life
	3. Apply through assignments and/or classroom
	participation of critical skills to improve the
	students' skills of operating in a group
Research Treatise – III	1. Analyse the data by applying concepts and
	techniques learnt in various courses
	2. Evince interest to read journal articles and pose
	research problems related to the courses studied

IV	Industry Internship	1. Handle raw data, formulate objectives to the business problems and find solutions using various statistical techniques
		2. Develop professional skills that help in
		contributing to the growth of the organisation